2012 AISI Officers

Chairman of the Board
John P. Surma
Chairman and Chief Executive Officer
United States Steel Corporation

Vice Chairman
Joseph A. Carrabba
Chairman, President and
Chief Executive Officer
Cliffs Natural Resources, Inc.

Vice Chairman
Daniel R. DiMicco
Chairman and Chief Executive Officer
Nucor Corporation

Vice Chairman
Regulo Salinas
Vice President
Ternium México

President and CEO
Thomas J. Gibson
President and Chief Executive Officer
American Iron and Steel Institute

Secretary and General Counsel
Kevin M. Dempsey
Senior Vice President, Public Policy and General Counsel
American Iron and Steel Institute

Treasurer
Lawrence W. Kavanagh
President
Steel Market Development Institute
American Iron and Steel Institute

COVER: Photo by Jeff Amberg. Photo courtesy of Nucor Steel Berkeley.
CONTENTS

Foreward

1 American Steel: Strength for our Future

2 Building a Sustainable Future

4 Global Leader in Labor Productivity

6 Steel’s Presence Throughout America

7 Automotive

8 Construction

11 Container

12 Steel and National Security

14 Breakthrough Technologies

18 Directory of AISI and its Member Companies
A Message from AISI President and CEO Thomas J. Gibson

America stands at a crossroads, and our commitment to restore America’s economic strength and prosperity will determine our future. A central strategy to strengthen our economy and competitiveness is to have a healthy and growing manufacturing sector. The American Iron and Steel Institute (AISI) is proud of its history of advocating on behalf of the domestic steel industry, a sector that is fundamental to the strength of American manufacturing and to America’s economic and national security.

In the pages that follow, you will find a profile of the American steel industry: who we are, the achievements of our companies and their skilled workers, and our commitment to sustainability, which is reflected in our products and our performance. Steel’s strength and versatility have helped to establish it as the material of choice in America’s energy and transportation systems, the skyscrapers that grace our cities and the containers that help protect our food supply. Likewise, the new generation of advanced high-strength steel is contributing to the rapidly growing fleet of highly fuel-efficient vehicles on our roads and highways. These and numerous other steel applications are highlighted in the Profile of the American Iron and Steel Institute 2012.

In addition to this industry profile and the directory of AISI member companies that follows, we encourage you to also visit www.steel.org to find out more about America’s hi-tech, innovative and globally competitive steel industry.

Sincerely,

THOMAS J. GIBSON
President and CEO, American Iron and Steel Institute (AISI)
American Steel—Strength for our Future

The American steel industry continues to be a cornerstone of the American economy.

The backbone of manufacturing, steel is a strategic industry, essential to America’s economic growth and stability. The steel sector helped build the face of America, engendering a sense of national pride through famous landmarks, such as the Golden Gate Bridge welcoming visitors to our western states, the St. Louis Arch at the crossroads of America and the Chrysler Building that gives a unique flourish to New York City’s skyline.

Not only is it an essential material in these American treasures, steel is fundamental to American society and our modern way of life. Our nation’s energy supply, transportation system, urban centers, clean water and safe food supply all depend on steel. Innovation and technology have transformed America’s 21st century steel industry into a world leader in quality, performance and sustainability.
Building a Sustainable Future

The American steel industry has had a long-standing commitment to sustainability in both its products and its practices. This commitment is backed by significant investment in state-of-the-art facilities that improve energy efficiency, reduce carbon emissions and heighten productivity. By deploying new steelmaking technologies and through the innovations of the workers on the plant floor, the industry has reduced energy intensity per ton of steel produced by 27 percent and CO₂ emissions by 33 percent per ton of steel shipped since 1990. In fact, the steel industry is the only significant industry in the U.S. that reduced its total energy consumption while increasing its production from 1990 to 2008.

The Steel Industry Improved its Energy Efficiency by 27% Since 1990

Source: American Iron and Steel Institute
Recycling

The overall recycling rate of steel remains at the high level of 88 percent based on data compiled by the Steel Recycling Institute (SRI) through 2010. Almost 76 million tons of domestic steel scrap were charged into furnaces. All steel is 100 percent recyclable and more steel is recycled each year than aluminum, copper, paper, glass and plastic combined.

Steel is the engine that drives the recycling of many consumer goods, as evidenced by recycling rates for the following products: automobiles (112.9%) appliances (90%), steel containers (67.1%), structural steel (98%), and construction reinforcement steel (70%). Recycling rates for automobiles are often near or over 100%, as older vehicles being recycled are often heavier than new cars, which are lighter and more fuel-efficient through the use of advanced high-strength steels.

As a result of the steel industry’s commitment to sustainability, we are aggressively seeking ways to reduce our environmental footprint even while producing the advanced and highly recyclable steel that our economy needs. In fact, the American steel sector has been recognized as having the steepest decline of total air emissions among nine manufacturing sectors studied in the U.S. Environmental Protection Agency’s (EPA) 2008 Sector Performance Report. A helpful tool that the industry is using as part of this process is the Life Cycle Assessment (LCA) approach, which is essential to measuring the real environmental impact of a material. Among other things, LCA considers the total environmental impacts generated by the production, as well as use and end-of-life (recycling or disposal) phases of a product. Steel has life cycle advantages over competing materials because of its relatively low energy use, high recyclability, the conservation of natural resources, such as water, and the extensive re-use of by-products.
Global Leader in Labor Productivity

For every one of the steel industry’s 150,700 direct jobs, the steel sector generates seven jobs in upstream and downstream industries, adding more than 1,022,009 jobs to the economy. Labor productivity has seen a five fold increase since the early 1980s, going from an average of 10.1 man-hours per finished ton to an average of two man-hours per finished ton of steel in 2010. Many North American plants are producing a ton of finished steel in less than one man-hour. These achievements are only possible through a highly-skilled workforce. In that regard, member companies of the American Iron and Steel Institute are committed to continuous improvement in safety and health and to achieving an injury-free workplace.

Steel Industry Labor Hours per Tons of Steel (1980–2010)

Despite such strong performance by the steel industry and its workforce, American steelmakers’ ability to compete globally is being threatened by nations unwilling to abide by international trade rules set by the World Trade Organization and by American trade laws. Nations that habitually circumvent U.S. anti-dumping and countervailing duty laws in order to send unfairly traded imports into our market, must face consequences. To counter such foreign unfair trade practices, America must establish and enforce trade policies that will truly level the international playing field for all manufacturers, including keeping our trade laws strong and strictly enforcing them.
China’s currency undervaluation by as much as 25 to 30 percent is an example of trade-distorting practices which harm the economies of the United States as well as our trading partners by keeping China’s export prices artificially low.

American manufacturers, including U.S. steelmakers, can compete with anyone in the world, but we cannot compete with governments. That is why AISI is urging our government leaders to embrace and put in place a national manufacturing strategy. Such an approach can restore our manufacturing sector and create millions of new jobs through a comprehensive program to rebuild our infrastructure, achieve energy independence—which will also significantly reduce our trade deficit—and enforce our trade laws. It must also remove artificial barriers built by our trading partners and ensure that domestic policies are pro-manufacturing.
The North American steel industry consists of healthy, world-class companies that are internationally competitive.

Steel’s Presence Throughout America

Steel has long been considered the backbone of the American manufacturing sector, providing an essential material for downstream manufacturers in the automotive, energy, machinery and equipment, container, appliance and rail industries. Steel is a critical building material for the nation’s energy, transportation and water infrastructure; and to commercial and residential construction.

In addition, steel products are a critical component in virtually every military platform and are essential to our national defense.

As we enter the second decade of the 21st century, the steel sector is recovering from the worst global recession since World War II. Prior to the global recession, the steel industry enjoyed five consecutive years of robust demand and strong performance. The North American steel industry consists of healthy, world-class companies that are internationally competitive.

In 2012, the steel sector expects to see gradual progress in comparison to 2011, with the market experiencing improvement in steel demand. Following is a summary of selected 2011 statistics for the American steel sector:

<table>
<thead>
<tr>
<th>2011 U.S. Steel Industry STATISTICAL HIGHLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel shipments</td>
</tr>
<tr>
<td>Imports (finished)</td>
</tr>
<tr>
<td>Exports</td>
</tr>
<tr>
<td>Apparent steel demand</td>
</tr>
<tr>
<td>Direct employment</td>
</tr>
<tr>
<td>Direct & indirect total</td>
</tr>
</tbody>
</table>

Note: all data are estimates based on latest available data

2011 Steel Shipments by Market Classification

Source: American Iron and Steel Institute
Automotive

The North American steel industry’s continual investment in advanced technologies has led to the introduction of a wide variety of new automotive steels. These new steel grades are growing faster in new automobiles than even aluminum and plastics, steel’s main competitors. Each year new car models are introduced using lighter-weight yet higher-strength steel components that provide a cost-effective answer to the demand for increased safety and fuel economy in automobiles and light trucks.

The total steel in the average 2010 vehicle is approximately 60 percent. A substantial portion of the steel in modern body structures, about 17 percent, is made up of these new, advanced high-strength steels (AHSS). According to Ducker Worldwide, these grades have grown in use by 93 percent in 2010 and are projected to grow by over 300 percent by 2020 from a level of 81 pounds per vehicle in 2006. These modern steels provide a superior combination of high strength, crash energy management, excellent formability and dent resistance enabling automotive engineers to reach new targets of safety, performance and cost efficiency. These new steel technologies are showcased each year at AISI’s Steel Market Development Institute’s Great Designs in Steel seminar, which has become the leading go-to forum for the latest trends in automotive steel designs.

Substantial mass savings of over 25 percent have been achieved with these grades in body and component systems over the last decade. Recent projects including FutureSteelVehicle (a WorldAutoSteel study released in May 2011) show that the latest AHSS grades combined with innovative steel processing methods and design optimization techniques enable steel to achieve 35 percent mass reduction in many applications, virtually equivalent to past mass reduction levels achieved by aluminum. Mass reduction with AHSS not only conserves material but helps reduce greenhouse gas emissions over the full life cycle of the vehicle. If, for example, currently available AHSS were applied throughout the present U.S. automotive fleet, greenhouse gas emissions from automobiles would be reduced by approximately 12 percent—an amount greater than the emissions generated by the entire American steel industry today. This reduction in emissions is, in fact, already underway as automotive designers around the world use increasing amounts of AHSS in their vehicles.
Construction

The National Institute of Standards and Technology notes that “steel has become one of the most reliable, most used and most important materials of the age.” As an advanced engineered material, steel is the material of choice by engineers and architects because of its strong performance characteristics, its reliability, its versatility in design and consistency as a product, and its decidedly “green” profile.

Residential and Commercial Construction

For example, the average steel-framed house can be made from four recycled cars, while it takes more than 40 trees to build a wood-framed home. Under the U.S. Green Building Council Leadership in Environmental and Energy Design (LEED®) green building rating system, steel is always a net contributor to the two available points provided for recycled content under Materials & Resources Credit 4: Recycled Content. Both commercial and residential steel buildings and steel roofs offer energy efficiency, longer life expectancy, low life-cycle costs and greater durability.
Bridges connect us as a nation. We need them to transport billions of tons in freight each year from coast to coast.

Yet the Federal Highway Administration (FHWA) estimates that over 25 percent of America’s nearly 600,000 bridges are either structurally deficient or functionally obsolete. Repairing and/or replacing these bridges with modern steel bridge designs must be a national priority. Steel bridges offer owners practical design and accelerated bridge construction solutions that are durable, cost-effective, and offer ease of maintenance and construction. In fact, high performance steels can save up to 18 percent of a bridge project’s cost. And new permanent modular steel bridges are now available, which can be constructed in a single weekend. To upgrade our crumbling infrastructure, the Federal Highway Administration estimates that a 20-year investment of $131.7 billion is needed for bridges and highways alone. The American Society of Civil Engineers’ (ASCE) economic report on surface transportation (July 2011) found that deteriorating infrastructure will cost the American economy more than 876,000 jobs and suppress the growth of our GDP by $897 billion by the year 2020. The ASCE 2009 Report Card for America’s Infrastructure graded the nation’s critical infrastructure systems with a “D” and noted a five-year investment need of $2.2 trillion.

Today, America’s bridges are utilizing bridge technologies that help save taxpayer dollars as we rebuild our infrastructure over the next two decades. In addition, designers and engineers can specify new high-performance steels (HPS), developed by member companies of AISI with the Office of Naval Research and the Federal Highway Administration. These steels have superior toughness and can be welded with little or no preheat. Today, there are more than 400 HPS bridges in use in 45 states.
Steel offers cost-competitive solutions. Roadways that use continuously reinforced concrete pavement (CRCP—reinforced with steel) have been shown to improve fuel efficiency in heavy vehicles by as much as 20 percent. CRCP means increased environmental benefits because it is made of 100 percent recycled material, and it reduces thermal heat in cities and traffic delays for motorists because of fewer road repairs and reconstruction.

Transportation/Infrastructure

In a globalized economy, America’s infrastructure is important to our competitive edge considering the overall cost of congestion. The Texas Transportation Institute estimates that, in 2010, congestion in 439 metropolitan areas caused urban Americans to travel 4.8 billion hours more and to purchase an extra 1.9 billion gallons of fuel for a congestion cost of $101 billion. It’s also important to employment. According to the American Road and Transportation Builders Association, the U.S. transportation design and construction industry generates more than $380 billion in economic activity annually and sustains 3.4 million American jobs—nearly three percent of the nation’s Gross Domestic Product (GDP). The Department of Transportation reports that every $1 billion federally invested in highway capital supports nearly 37,500 American jobs.

Other steel-intensive infrastructure includes pipe for waterways, oil and natural gas exploration and distribution, and culverts and water tanks, to name a few examples. The energy sector is expected to be a strong source of steel demand over the next 10 years, particularly as the nation’s energy infrastructure is further developed. Electric companies alone will need to spend an estimated $880 billion to strengthen our nation’s electric distribution and transmission systems from 2010 to 2030 in order to maintain a reliable supply of electricity.

Electric Utility Distribution Poles

Steel’s profile as a green material has led to growing interest in replacing aging wood electric utility distribution poles with poles made of steel. Steel utility distribution poles have a number of clear advantages over competing materials (treated wood and concrete). These include ease of installation, reliability, durability, life cycle cost and environmental considerations. There are approximately 185 million utility distribution poles in North America. An estimated two to four million poles are replaced annually.

Since 1998, close to one million steel distribution poles have been installed, and are now being used by over 600 of 3,100 U.S. and Canadian electric utilities.
Container

Steel cans are the most recycled food and beverage package in the world, giving steel an important role in providing America with sustainable packaging for foods essential to a healthy diet.

Given the benefits canned foods offer including nutrition, convenience, value, versatility, year-round availability, economic impact and sustainability, AISI’s Canned Food Alliance (CFA) works with Congressional offices and the U.S. Department of Agriculture (USDA) to ensure that canned foods play a role in federal food and nutrition programs. The USDA includes canned foods in the 2010 Dietary Guidelines for Americans and supports the inclusion of canned food in its Supplemental Nutrition Program for Women, Infants and Children (WIC). As the government and nutrition professionals strive to increase Americans’ consumption of fruits and vegetables and key nutrients such as fiber and protein, canned foods provide year-round access to nutritious, affordable and convenient options.

Named a National Strategic Partner by the USDA in September 2011, CFA supports the USDA’s Center for Nutrition Policy and Promotion mission to help educate Americans about the new 2010 Dietary Guidelines for Americans and the MyPlate food icon.

The CFA is also a member of the Produce For Better Health Foundation (PBH), the American Fruit and Vegetable Processors and Growers Coalition, the Society for Nutrition Education and Behavior (SNEB) and the National Fruit and Vegetable Alliance (NFVA), which includes the Center for Disease Control, U.S. Department of Agriculture, PBH, National Cancer Institute, American Cancer Society, state health departments and other respected organizations.

As part of the NFVA partnership, AISI has met with representatives of the First Lady’s “Let’s Move” initiative at the White House and is now working with several partners to place salad bars in thousands of schools over the next five years. For more information, visit www.mealtime.org.
National Security

It is vital to U.S. national economic security and to our homeland security that America does not become dangerously dependent on offshore sources of supply. Here are some examples of applications for domestic steel vital to America’s infrastructure:

✦ **Energy infrastructure** such as petroleum refineries, oil and gas pipelines, storage tanks, electricity power generating plants, electric power transmission towers and utility distribution poles;

✦ **Transportation infrastructure** such as highways, bridges, railroads, mass transit systems, airports, seaports and navigation systems;

✦ **Health and public safety infrastructure** such as dams and reservoirs, waste and sewage treatment facilities, the public water supply system and, increasingly, residential construction;

✦ **Commercial, industrial and institutional complexes** such as manufacturing plants, schools, commercial buildings, chemical processing plants, hospitals, retail stores, hotels, houses of worship and government buildings.
American-made steels and specialty metals are crucial components of U.S. military strength.

Military uses for steel are extensive. Thousands of skilled men and women of the American steel industry work to produce high-quality, cost-competitive products that are used by the military in various applications ranging from aircraft carriers and nuclear submarines to Patriot and Stinger missiles, armor plate for tanks and field artillery pieces, as well as every major military aircraft in production today. Some examples of steel use in defense applications are:

✦ The USS New York was built with 24 tons of steel reclaimed and recycled from the World Trade Center.
✦ The USS George H.W. Bush, an aircraft carrier named after the 41st President, contains 47,000 tons of structural steel and serves as home to 6,000 Navy personnel.
✦ Steel is a strategic material needed to strengthen existing U.S. infrastructure and installations.

All segments of the domestic steel industry contribute directly or indirectly to the defense industrial base. Whether it is missiles, jet aircraft, submarines, helicopters, Humvees® or munitions, American-made steels and specialty metals are crucial components of U.S. military strength. Steel plate is used in the bodies and propulsion systems of the naval fleet. The control cables on virtually all military aircraft, including fighter jets and military transport planes, are produced from steel wire rope. In addition, land-based vehicles such as the Bradley Fighting Vehicle, Abrams Tank and mine-resistant ambush-protected (MRAP) vehicles use significant amounts of steel.
AISI has long identified commitment to sustainability as part of our industry’s strategic plan. In line with that vision, the American steel industry is currently conducting research on the next generation of iron and steelmaking technologies that will dramatically reduce or eliminate CO₂ emissions.

Breakthrough Technologies

U.S. steelmaking processes are highly optimized because of advances and energy management over the last two decades. Efforts will be made to achieve further incremental improvements, but to make major reductions in future energy use, entirely new processes are required.

The American steel industry is conducting research on the next generation of iron and steelmaking technologies that will dramatically reduce or eliminate CO₂ emissions. These new “breakthrough technologies” are being developed over the next 10 to 15 years. Accordingly, any proposed CO₂ reduction regulations must recognize the time required for these technologies to first be fully developed and tested in order for them to become commercially available. Widespread adoption of new technology historically has proven to take from two to three decades in the steel industry.

A project at Massachusetts Institute of Technology (MIT) is developing a process to produce iron by Molten Oxide Electrolysis (MOE), an environmentally friendly technology for the production of metals. MOE is a derivative of molten salt electrolysis, a technology that has been producing tonnage metal for over 100 years—aluminum is produced in this manner.

To produce iron by MOE, molten iron oxide is decomposed by the action of electric current into liquid iron and oxygen gas. What sets MOE apart from all other metal-producing technologies is that it is carbon-free and, except for GHG emissions in the production of electricity, generates no significant greenhouse gases.

The team at MIT has succeeded in demonstrating the technical viability of MOE by producing liquid metal and oxygen gas in a laboratory-scale cell. Promising results for a new proprietary low-cost, oxygen-evolving anode have been obtained. Next steps on the project involve the design, construction, and operation of a large-scale, self-heating lab cell which would provide all the information needed to design the first-generation industrial-scale cell.
At the University of Utah, researchers are developing a novel flash ironmaking process based on hydrogen and the direct gaseous reduction of iron oxide concentrates in a flash reduction process. “Flash Smelting” technology is adapted from mining processes and will operate using hydrogen, natural gas and/or coal as fuel. Due to the shale gas discoveries in the USA, the next phase of research will first prove the process on natural gas, thus effecting a logical progression from a natural gas based process for fines to one based on hydrogen. As is the case with MOE, this technology has the potential of significantly reducing environmental emissions even with a combination of these fuels.

AISI members are also developing the Paired Straight Hearth Furnace, a high-productivity, low-energy ironmaking unit that can process steel plant wastes, as well as virgin iron materials. Using coal instead of coke, this process will be available for commercial demonstration in less than five years.

These near term and longer term research and development projects could fundamentally change the way steel is produced and make clear steel’s commitment to a sustainable future.
The American Iron and Steel Institute (AISI)

Founded in 1855 as the American Iron Association, today’s American Iron and Steel Institute history spans more than 150 years. Headquartered in Washington, D.C., AISI advocates on behalf of its member companies for public policies that support a globally-competitive American steel industry. Never has it been more critical than it is today for the American steel industry to speak out loud and clear and with a unified voice on major policy issues that are impacting American manufacturers.

The American Iron and Steel Institute’s mission is to influence public policy, educate and shape public opinion in support of a strong, sustainable U.S. and North American steel industry committed to manufacturing products that meet society’s needs.

To achieve its mission, AISI:

✦ **FOCUSES ON THE ADVOCACY** of public policy issues central to the steel industry, issues where AISI can make an impact and issues where there is strong member alignment.

✦ **INFORMS AND EDUCATES** opinion leaders about the North American steel industry’s strategic importance to national and economic security.

✦ **COMMUNICATES THE BENEFITS** that the industry’s technological advances are making to the health and safety of its workforce and to the environment.

✦ **COLLECTS AND PROVIDES INDUSTRY DATA** to policymakers, company personnel and the public regarding steel operations, production, energy efficiency, shipments, import/export levels and consumption.

✦ **PURSUES TECHNOLOGY ADVANCEMENTS** through Collaborative Research and Development.

✦ **ASSISTS MEMBER COMPANIES** in attracting and retaining talent.

✦ **ADVANCES THE COMPETITIVE USE** of steel in traditional and growth markets.
The Steel Market Development Institute (SMDI)

The Steel Market Development Institute (SMDI), a business unit of AISI, grows and maintains the use of steel through strategies that promote cost-effective solutions in the automotive, construction and container markets, as well as for new-growth opportunities in emerging steel markets. The Steel Market Development Institute investor companies are: AK Steel Corporation, ArcelorMittal Dofasco, ArcelorMittal USA, Evraz Inc. NA, Gerdau Long Steel North America, Nucor Corporation, Severstal North America Inc., SSAB Americas, ThyssenKrupp Steel USA, LLC, United States Steel Corporation and USS-POSCO Industries.

In partnership with these investing steel companies, the Steel Market Development Institute:

✦ **WORKS WITH AUTOMOTIVE ENGINEERS** to develop and promote lightweight future vehicle designs and the next generation of steel technologies;

✦ **CONDUCTS RESEARCH, TECHNOLOGY TRANSFER AND MARKETING**, and provides sustainable steel-based solutions to challenges faced in the commercial and residential construction sectors, transportation and infrastructure sectors, and energy sectors through its Construction Market program. This includes the development and maintenance of building codes and standards;

✦ **INTERFACES WITH LEGISLATORS** at the federal and state levels to inform them about the importance of including nutritional canned food in national programs for schoolchildren; and

✦ **STRATEGIZES WITH ALL STAKEHOLDERS**—from customers to political leaders—in all markets to determine how to provide steel-based solutions to their critical marketplace challenges.

The Steel Recycling Institute (SRI)

The Steel Recycling Institute (SRI) is an industry association dedicated to communicating the sustainable efforts of the North American steel industry. The SRI educates the solid waste industry, government, business and ultimately the consumer about the benefits of steel’s recycling accomplishments and advancements in sustainability.
AISI Producer Members and their Locations in North America

A. FINKL & SONS CO.

North American Locations
Headquarters: Chicago, IL
U.S.
California
Southgate
Michigan
Warren
Minnesota
Minneapolis
Ohio
Tallmadge
A. Finkl & Sons Co. has additional locations in Canada and Mexico
North American Production: Processes over 100,000 tons

AK STEEL CORPORATION

North American Locations
Headquarters: West Chester, OH
U.S.
Indiana
Columbus: Tubular steel
Rockport: Continuous carbon/stainless pickling line, continuous carbon/stainless cold mill, stainless continuous annealing/pickling line, hydrogen annealing, temper mill, off-line coil inspection and continuous hot-dip galvanizing/galvannealing line
Kentucky
Ashland: Galvanized strip, galvannealed strip
Minnesota
Nashwauk: Magnetation LLC (a joint venture of which AK Steel owns 49.9%)—iron ore concentrate from previously mined ore reserves
Ohio
Coshocton: Stainless steels in cold rolled strip, sheet coils
Mansfield: Flat rolled carbon, silicon, ferritic stainless
Middletown: Enameling iron, electro galvanized, hot dip galvanized, hot-dip aluminized, hot-dip aluminized stainless
Walbridge: Tubular steel
Zanesville: Oriented and non-oriented, electrical steel, stainless flat rolled
Pennsylvania
Butler: Hot rolled, cold rolled, stainless, oriented and non-oriented electrical flat-rolled
Somerset County: AK Coal Resources, Inc. (a wholly-owned subsidiary of AK Steel)—metallurgical coal reserves
North American Production: 6.0 million tons

ALTOS HORNOS DE MÉXICO, S.A.B. DE C.V.

North American Locations
Headquarters: Av. Juarez S/No., Col. La Loma, Monclova, Coahuila, México
MÉXICO
Coahuila
Monclova facility: Plate; hot rolled coil, cold rolled coil, tin, tin free steel, structural shapes, service center
Distrito Federal
Mexico City: Sales office
Estado de Mexico
Atizapán de Zaragoza: Service center
Jalisco
Zapopan: Service center and sales office
Nuevo León
Monterrey: Nacional de Aceros, S.A. de C.V. (NASA): Light weight wall tubes, sales office
San Luis Potosí
San Luis Potosí: Sales office
U.S.
Texas
San Antonio: Sales office
North American Production: 4.1 million tons
ARCELORMITTAL NORTH AMERICA

North American Locations
Headquarters: Chicago, IL

CANADA
Ontario
Brampton: Tube
Hamilton (Dofasco): Flat, Tube
London: Tube
Windsor: Flat
Woodstock: Tube

Quebec
Fire Lake: Mine
Montreal (Contrecoeur East): Long
Montreal (Contrecoeur West): Long
Montreal (Longueuil): Long
Mount-Wright: Mine
Port-Cartier: Pellet Plant and Port
St. Patrick: Long

MEXICO
Guanajuato
Celaya: Long

Michoacan
Lazaro Cardenas: Flat and Long

Nuevo León
Monterrey: Tube

U.S.
Illinois
Riverdale: Flat

Indiana
Burns Harbor: Flat and plate
East Chicago: Flat, long, and global research and development center
New Carlisle: I/N Tek and I/N Kote (joint venture with Nippon Steel): Flat

Kentucky
Ghent (Gallatin): Flat (joint venture with Gerdau Ameristeel)

Louisiana
LaPlace: Long

Minnesota
Virginia: Minorca Mine
Hibbing Taconite: Mine (joint venture with U.S. Steel and Cliffs Natural Resources)

North Carolina
Piedmont (Newton): Plate

Ohio
Cleveland: Flat
Columbus: Flat
Marion: Tube
Shelby: Tube
Warren: Coke

Pennsylvania
Coatesville: Plate
Conshohocken: Plate
Monessen: Coke (idled)
Steelton: Long

South Carolina
Georgetown: Long

Texas
Vinton: Long

West Virginia
Princeton: Mine
Weirton: Flat

North American Shipments: approximately 21 million tons

BERG STEEL PIPE CORP

North American Locations
Headquarters: Panama City, FL

U.S.
Alabama
Mobile: Spiral pipe

Florida
Panama City: Steel pipe 24 through 64-in. OD; wall thickness 0.250 through 1.5 inches

Texas
Houston: Sales office

North American Production: 550,000 tons
CALIFORNIA STEEL INDUSTRIES

North American Locations
Headquarters: Fontana, CA

U.S.
California
Fontana: Converts purchased steel slab into hot rolled, pickled and oiled, galvanized, and cold rolled sheet; electrical resistance welded pipe
North American Production: 1.5 million tons

CLIFFS NATURAL RESOURCES

North American Locations
Headquarters: Cleveland, OH

CANADA
Quebec
Fermont: Bloom Lake (mine)
Montreal: Cliffs Quebec Iron Mining Limited

Ontario
Thunder Bay: Cliffs Chromite Far North Inc.
Toronto: Cliffs Chromite Far North Inc.

U.S.
North American Iron Ore
Michigan
Ishpeming: Tilden Mine
Palmer: Empire Mine

Minnesota
Babbitt: Northshore Mining Company (mine)
Duluth: Shared services
Eveleth: United Taconite (mine)
Forbes: United Taconite (processing facility)
Hibbing: Hibbing Taconite
Silver Bay: Northshore Mining Company (processing facility)

North American Coal
Alabama
Adger: Oak Grove Mine

West Virginia
Man: Cliffs Logan County Coal
Pineville: Pinnacle Complex

Cliffs is organized through a global commercial group responsible for sales and delivery of products and a global operations group responsible for the production of the minerals it markets. In addition to its North American operations, Cliffs is a significant supplier of steelmaking raw materials in the Asia Pacific region, with two iron ore mining complexes in Western Australia, and an economic interest in a coking and thermal coal mine in Queensland, Australia. Cliffs also has a major chromite project in the pre-feasibility stage of development in Ontario, Canada, and a business presence, Cliffs Natural Resources Exploration Chile Ltda., located in Santiago, Chile.

North American Iron Ore: 38.4 million tons
North American Coal: 9.4 million tons

COMPANIA SIDERURGICA HUACHIPATO

North American Locations
Headquarters: Chile

CHILE
Concepcion (Bio-Bio Region)
Talcahuano: Coke production, steelmaking, reinforcing round, wire rod, grinding bars, hot rolled, cold rolled and galvalume

DEACERO, S.A. DE C.V.

North American Locations
Headquarters: San Pedro Garza Garcia, Nuevo León–Mexico

MEXICO
Baja California
Mexicali: Wire products
Tijuana: Distribution Center

Coahuila
Ramos Arizpe/Saltillo: Steelmaking, billet, wire rod, rebar, wire products
<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distrito Federal</td>
<td></td>
</tr>
<tr>
<td>Delegacion Gustavo A. Madero</td>
<td>Scrap recollection center</td>
</tr>
<tr>
<td>Estado de Mexico</td>
<td></td>
</tr>
<tr>
<td>Tlalnepantla</td>
<td>Wire products, scrap recollection center, sales office</td>
</tr>
<tr>
<td>Tultitlan</td>
<td>Scrap recollection center, distribution center</td>
</tr>
<tr>
<td>Guanajuato</td>
<td></td>
</tr>
<tr>
<td>León</td>
<td>Wire products</td>
</tr>
<tr>
<td>Irapuato</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Villagran/Celaya</td>
<td>Steelmaking, billet, wire rod, rebar, wire products</td>
</tr>
<tr>
<td>Jalisco</td>
<td></td>
</tr>
<tr>
<td>El Salto</td>
<td>Sales office</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>Scrap recollection center, distribution center</td>
</tr>
<tr>
<td>Michoacan</td>
<td></td>
</tr>
<tr>
<td>Morelia</td>
<td>Wire products</td>
</tr>
<tr>
<td>Nuevo León</td>
<td></td>
</tr>
<tr>
<td>Apodaca</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Guadalupe</td>
<td>Wire products, scrap recollection center</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>Wire products</td>
</tr>
<tr>
<td>San Nicolas de los Garza</td>
<td>Scrap recollection center</td>
</tr>
<tr>
<td>San Pedro Garza García</td>
<td>Sales office</td>
</tr>
<tr>
<td>Puebla</td>
<td></td>
</tr>
<tr>
<td>Puebla</td>
<td>Wire products, scrap recollection center, sales office, distribution center</td>
</tr>
<tr>
<td>Queretaro</td>
<td></td>
</tr>
<tr>
<td>Queretaro</td>
<td>Wire products</td>
</tr>
<tr>
<td>San Luis Potosi</td>
<td></td>
</tr>
<tr>
<td>San Luis Potosi</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Sinaloa</td>
<td></td>
</tr>
<tr>
<td>Culiacan</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Sonora</td>
<td></td>
</tr>
<tr>
<td>Hermosillo</td>
<td>Scrap recollection center</td>
</tr>
<tr>
<td>Tabasco</td>
<td></td>
</tr>
<tr>
<td>Villa Hermosa</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td></td>
</tr>
<tr>
<td>Matamoros</td>
<td>Scrap recollection center</td>
</tr>
<tr>
<td>Veracruz</td>
<td></td>
</tr>
<tr>
<td>Veracruz</td>
<td>Distribution center</td>
</tr>
<tr>
<td>U.S.</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
</tr>
<tr>
<td>Indianapolis</td>
<td>Distribution center</td>
</tr>
<tr>
<td>Texas</td>
<td></td>
</tr>
<tr>
<td>Houston</td>
<td>Deacero USA, Inc. (wire products and sales office)</td>
</tr>
<tr>
<td>Laredo</td>
<td>Distribution center</td>
</tr>
<tr>
<td>New Braunfels</td>
<td>Stay Tuff Fence Manufacturing, Inc. (wire products)</td>
</tr>
<tr>
<td>North American Production: 2.7 million tons</td>
<td></td>
</tr>
</tbody>
</table>

DTE ENERGY SERVICES

North American Locations

Headquarters: Ann Arbor, MI

U.S.

Indiana

Burns Harbor

Maryland

Baltimore

Michigan

River Rouge

Pennsylvania

Pittsburgh

North American Production: Among the many energy operations of DTE are steel mill coke and coal operations and other steel industry fuel-related projects.

EVRAZ INC. NA

North American Locations

Headquarters: Portland, OR

U.S.

Colorado

Pueblo: Rails, billets and special sections, wire rods, coiled rebar, bar, seamless pipe
Delaware
Claymont: Cast slabs, plate, custom burned plate

Oregon
Portland: Plate and coil, heat treating, large diameter line pipe, structural tubing

Canada
Saskatchewan
Regina: Plate and coil, cut-to-length sheet and plate, large diameter line pipe, medium diameter ERW pipe, small diameter OCTG & line pipe, research and development

Alberta
Calgary: Small diameter OCTG, heat treating
Camrose: Large diameter line pipe, medium and small diameter ERW pipe
Red Deer: Small diameter OCTG and line pipe, HSS

British Columbia
Surrey: Cut-to-length sheet & plate, coils

North American Production: 2.5 million tons

Gerdaul Long Steel North America
North American Locations
Headquarters: Tampa, FL

U.S.
Alabama
Birmingham: Rebar fabrication
Trussville: Rebar fabrication

Arkansas
Little Rock: Rebar fabrication
Paragould: Rail spikes, rebar fabrication

California
Rancho Cucamonga Steel Mill: Rebar

Florida
Fort Lauderdale: Rebar fabrication
Jacksonville: Billets, rebar, rebar coil, wire rod
Jacksonville: Rebar fabrication
Tampa: Rebar fabrication, Technical Resource Center

Georgia
Albany: Rebar fabrication
Atlanta: Rebar fabrication
Cartersville Steel Mill: Billets, angles, unequal angles, flats, channels, MC channels, WF beams, S beams
Cartersville: Rebar fabrication
Savannah: Rebar fabrication

Illinois
Belvidere: Rebar fabrication
Decatur: Rebar fabrication
Joliet Steel Mill: Flats, squares
Sterling: Rebar fabrication
Urbana: Rebar fabrication

Indiana
Muncie: Rebar fabrication

Iowa
Eldridge: Rebar fabrication

Kentucky
Calvert City Steel Mill: Angles, unequal angles, flats, channels, MC channels
Louisville: Rebar fabrication

Louisiana
New Orleans Express Shop: Rebar fabrication

Minnesota
Duluth: Grinding balls
St. Paul Steel Mill: Billets, carbon and alloy rounds, rebar

Missouri
Independence: Rebar fabrication
Kansas City: Rebar fabrication
St. Louis: Rebar fabrication

New Jersey
Perth Amboy: Rebar fabrication
Sayreville Steel Mill: Rebar, rebar fabrication
North Carolina
Charlotte Steel Mill: Billets, rounds, angles, unequal angles, flats, channels, rebar, rebar fabrication
Raleigh: Rebar fabrication

Ohio
Cincinnati: Rebar fabrication
Orrville: Bright bar, cold drawn steel

Oklahoma
Muskogee: Rebar fabrication
Oklahoma City: Rebar fabrication
Sand Springs: Rail spikes, rebar, rounds, flats, studded “T” fence post

Pennsylvania
York: Rebar fabrication
Lancaster: Rail spikes

Tennessee
Arlington: Rebar fabrication
Jackson Steel Mill: Billets, squares, angles, unequal angles, flats, channels, rebar
Johnson City: Rebar fabrication
Knoxville Steel Mill: Billets, rebar, rebar fabrication, plain round
Knoxville: Rebar fabrication
Memphis: Rebar fabrication
Nashville: Rebar fabrication

Texas
Beaumont Steel Mill: Billets, rebar coil, wire rod
Beaumont: Rebar fabrication
Carrollton: Wire rod
Dallas: Rebar fabrication
Houston: Rebar fabrication
Midlothian Steel Mill: Billets, Bantam® beams, S beams, WF beams, rebar, rounds, squares, channels, H piling, sheet piling

Virginia
King George: Rebar fabrication
Petersburg Steel Mill: WF beams, H piling, sheet piling

Wisconsin
Appleton: Rebar fabrication
Madison: Rebar fabrication

CANADA
Ontario
Cambridge: Rebar, rounds, flats, angles, channels, squares, billets
Oshawa: Raw materials recycling
Whitby: Angles, rebar, flats, channels, beams, billets

Manitoba
Selkirk: Special sections, SBQ, merchant, rebar, light and medium structural angles, channels

North American Production: 11.7 million tons

GERDAU SPECIAL STEEL NORTH AMERICA

North American Locations
Headquarters: Jackson, MI

U.S.
Arkansas
Fort Smith Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish) (Ft Smith, AR)

Indiana
Huntington Facility: Heat treating, quench and temper (Huntington, IN)
North Vernon Facility: Heat treating, cleaning and coating (North Vernon, IN)

Michigan
Jackson Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish) (Jackson, MI)
Monroe Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish) (Monroe MI)
Lansing Mt Hope Facility: Heat treating, cleaning and coating (Lansing, MI)
Lansing Basset Facility: Heat treating, cleaning and coating (Lansing, MI)
Ohio
Canton Facility: Heat treating, cleaning and coating (Canton, OH)

Wisconsin
Pleasant Prairie Facility: Nitro Steel® nitride steel bars (Pleasant Prairie, WI)

North American Production: 1.3 million tons

HARSCO METALS & MINERALS

North American Locations
Headquarters: HarSCO Metals and Minerals, Camp Hill, PA
Metals America, Cranberry Township, PA
HarSCO Minerals, Mechanicsburg, PA

U.S.
Alabama
Birmingham
Gadsden
Arkansas
Blytheville
Colorado
Pueblo
Illinois
Pawnee
Pekin
Indiana
East Chicago
Gary
Highland
Pittsboro
Whiting
Iowa
Muscatine
Kansas
LaCygne
Kentucky
Ashland
Drakesboro
Ghent
Michigan
Detroit
Ecorse
Missouri
Clifton Hill
Matson
North Carolina
Cofield
Ohio
Chester
Warren
Niles
Waterford
Pennsylvania
Braddock
Butler
Fairless Hills
Latrobe
Koppel
Midland
Natrona Heights
Sarver
Steelton
West Mifflin
Tennessee
Memphis
Texas
Houston
Midlothian
Rockdale
Utah
Provo
West Virginia
Moundsville
Canada
Ontario
Cambridge
Hamilton
Nanticoke
Whitby
Quebec
Contrecoeur
Sorel-Tracey
Mexico
Coahuila
Saltillo
Utah
Provo
West Virginia
Moundsville
Canada
Ontario
Cambridge
Hamilton
Nanticoke
Whitby
Quebec
Contrecoeur
Sorel-Tracey
Mexico
Coahuila
Saltillo
North American Production: HarSCO provides innovative resource recovery technologies, environmental solutions and logistics services to the metals and minerals industries.

IVACO ROLLING MILLS 2004 L.P.

North American Locations
Headquarters: L’Original, Ontario, Canada

Ontario
L’Original: Hot rolled steel wire rod, billet

North American Production: 900,000 tons

NUCOR CORPORATION

North American Locations
Headquarters: Charlotte, NC

U.S.
Alabama
American Buildings Company Alabama, Eufaula: Metal Buildings Systems
Nucor Steel Birmingham, Birmingham: Carbon steel reinforcing bar, rounds, squares
Nucor Steel Decatur LLC, Trinity: Carbon steel sheet in hot rolled, pickled, cold rolled, galvanized, galvannealed
Nucor Steel Tuscaloosa, Tuscaloosa: Carbon and high strength alloy, hot rolled coil and cut-to-length plate for structural and pressure vessel applications
Vulcraft Alabama, Fort Payne: Carbon steel in joists, joist girders, composite floor joist, and floor and roof deck
Harris Steel, Harris Rebar, Pell City: Rebar
Arkansas
Nucor Steel Arkansas, Blytheville: Carbon steel sheet in hot rolled, cold rolled, pickled, floor plate, galvanized coils
Nucor-Yamato Steel Company, Armorel: Carbon steel wide-flange beams, sheet and H-piling, miscellaneous and standard channels, angles, CZ and CSC car building sections, rail ties
Arizona
Harris Steel—Harris Rebar, Phoenix: Rebar
Harris Steel—Harris Rebar, Tucson: Rebar
Nucor Steel Kingman, Kingman: Carbon steel reinforcing bar, wire rod
Verco Decking, Phoenix: Steel floor, roof deck
California
CBC Steel Buildings, Lathrop: Metal building systems
Harris Steel—Harris Rebar, Lakeside: Rebar
Harris Steel—Harris Rebar, Diamond Bar: Rebar
Harris Steel—Harris Rebar, Fresno: Rebar
Harris Steel—Harris Rebar, Livermore: Rebar
Harris Steel—Harris Rebar, Pamona: Rebar
Nucor Trading USA, Los Angeles: Steel trading services
Verco Decking, Antioch: Steel floor, roof deck
Verco Decking, Fontana: Steel floor, roof deck
Colorado
Harris Steel—Harris Rebar, Commerce City: Rebar
Connecticut
Harris Steel—Barker Street, South Windsor: Fabricating shop, decorative concrete, building products, rebar sales
Nucor Steel Connecticut, Wallingford: Carbon steel reinforcing bar, wire rod, wire mesh fabrication, structural mesh fabrication, rolled wire, deformed wire
Florida
Harris Steel—Nufab Rebar, Milton: Rebar
Harris Steel—Nufab Rebar, Zellwood: Rebar
Hawaii
Harris Steel—Nufab Rebar, Kapolei: Rebar
Idaho
Harris Steel—Nufab Rebar, Meridian: Rebar
Illinois
American Buildings Company Illinois, El Paso: Metal building systems
Harris Steel—Nufab Rebar, Belvidere: Rebar
Harris Steel—Ambassador Steel Fabrication, Bourbonnais: Rebar
Harris Steel—Ambassador Steel Fabrication, Rochelle: Rebar
Nucor Steel Kankakee, Bourbonnais: Carbon steel angles, rounds, flats, reinforcing bar
Indiana
Harris Steel—Ambassador Steel Fabrication, Auburn: Corporate Offices
Harris Steel—Ambassador Steel Fabrication, Mooresville: Rebar
Nucor Building Systems Indiana, Waterloo: Metal building systems
Nucor Fastener Indiana, St. Joe: Carbon and alloy steel standard hex head cap screws, hex flange bolts, structural bolts and nuts, finished hex nuts
Nucor Steel Indiana, Crawfordsville: Carbon steel sheet in hot rolled, cold rolled, pickled, floor plate and galvanized coils; stainless steel in hot rolled, cold rolled, pickled coils
Vulcraft Indiana, St. Joe: Carbon steel in joist, joist girders, composite floor joist, and floor and roof deck
Iowa
Harris Steel—Ambassador Fabrication, Newton: Rebar
Kentucky
Harris Steel—Fisher & Ludlow, Florence: Bar and safety grating, expanded metals products
Louisiana
- Harris Steel–Nufab Rebar, Alexandria: Rebar
- Harris Steel–Nufab Rebar, Slidell: Rebar

Maine
- Harris Steel–Barker Steel, Scarborough: Rebar, building product sales

Massachusetts
- Harris Steel–Barker Steel, Canton: Fabricating shop; building products, forming sales
- Harris Steel–Barker Steel, South Deerfield: Fabricating shop, rebar sales
- Harris Steel–Barker Steel, Milford: Rebar, forming sales
- Harris Steel–Barker Steel, Westfield: Fabricating shop

Michigan
- Harris Steel–Ambassador Steel Fabrication, Comstock Park: Rebar
- Harris Steel–Ambassador Steel Fabrication, Lansing: Rebar

Minnesota
- Harris Steel–Ambassador Steel Fabrication, Minneapolis: Rebar

Mississippi
- Nucor LMP Steel Inc., Maryville: Cold finished bar and wire
- Gulf States Manufacturing, Starkville: Metal Building Systems
- Nucor Steel Jackson, Jackson: Carbon steel angles, flats, reinforcing rounds, squares

Missouri
- Nucor LMP Steel Inc., Maryville: Cold finished bar and wire
- Harris Steel–Ambassador Steel Fabrication, Kansas City: Rebar
- Harris Steel–Nufab; Ambassador Steel Fab., St. Louis: Rebar

Nebraska
- Nucor Cold Finish Nebraska, Norfolk: Carbon, leaded and alloy cold drawn steel bar
- Nucor Steel Nebraska, Norfolk: Carbon and alloy steel in special bar quality, cold heating quality and bearing quality, merchant bar quality in angles, channels, flats, hexagons, rounds and squares, rod, bar, squares, hex in coil

Vulcraft Nebraska, Norfolk: Carbon steel in joists, joist girders, composite floor joists, and floor and roof deck

Nevada
- American Buildings Company Nevada, Carson City: Metal Building Systems
- Harris Steel–Harris Rebar, Moundhouse: Rebar

New Hampshire
- Harris Steel–Barker Street, Canaan: Fabricating shop, structural steel, rebar and building product sales

New Jersey
- Harris Steel–Barker Street, Avenel: Fabricating shop; rebar, building product sales

New Mexico
- Harris Steel–Harris Rebar, Albuquerque: Rebar

New York
- Harris Steel–Barker Steel, Albany: Fabricating shop, rebar, product sales
- Harris Steel–Barker Steel, Long Island City: Building product sales
- Nucor Steel Auburn, Auburn: Carbon steel angles, channels, flats, reinforcing bars, rounds, squares
- Vulcraft New York, Chemung: Carbon steel in joists, joist girders, composite floor joists, special profile steel trusses, and floor and roof deck

North Carolina
- Nucor Corporation, Charlotte: Corporate Office
- Nucor Steel Hertford County, Cofield: Carbon steel plate
- Harris Steel, Fisher & Ludlow, Charlotte: Bar and safety grating; expanded metals products

Ohio
- Harris Steel–Ambassador Steel Fabrication, Marion: Rebar
- Nucor Steel Marion, Marion: Carbon steel angles, flats, rebar, rounds, signposts

Oregon
- Harris Steel–Harris Rebar, Portland: Rebar
Pennsylvania
Harris Steel–Harris Rebar, Bethlehem: Rebar
Harris Steel–Fisher & Ludlow, Wexford: Bar, safety grating; expanded metals products
Harris Steel, Fisher & Ludlow, Saegertown: Bar and safety grating; expanded metals products
Harris Steel, Fisher & Ludlow, McKees Rocks: Bar and safety grating; expanded metals products
Nucor Wire Products Pennsylvania, New Salem: Standard and custom wire products including wire rack decking, light weight galvanized mesh, mine mesh and engineering mesh

Rhode Island
Harris Steel–Barker Steel, Pawtucket: Fabricating shop; rebar, building products and forming sales

South Carolina
Nucor Building Systems South Carolina, Swansea: Metal Building Systems
Nucor South Carolina, Darlington: Carbon leaded and alloy cold drawn steel bars, carbon steel in special bar quality; merchant bar quality; and reinforcing products in the following shapes: angles, channels, flats, hexagons, reinforcing bars, rounds
Nucor Steel Berkeley, Huger: Carbon steel sheet in hot rolled, cold rolled, pickled, galvanized, and galvannealed coils, carbon steel wide range beams, manufacturing housing beams, standard I beams, miscellaneous and standard channels
Vulcraft South Carolina, Florence: Carbon steel in joists, joist girders, composite floor joists, and floor and roof deck

Tennessee
Nucor Steel Memphis, Memphis: Carbon steel in special bar quality rounds, round cornered squares
Kirby Building Systems, Portland: Metal Building Systems

Texas
Harris Steel–Nufab Rebar, Dayton: Rebar
Harris Steel, Nufab Rebar, Longview: Rebar
Nucor Building Systems, Terrell: Metal Building Systems
Nucor Steel, Denton: Light gauge steel panels, trusses
Nucor Steel Texas, Jewett: Carbon steel angles, channels, flats, reinforcing bars, rounds, special sections, squares, U.M. plates
Vulcraft Texas, Grapeland: Carbon steel in joists, joist girders, composite floor joists, special profile steel trusses, and floor and roof deck

Utah
Nucor Building Systems, Brigham City: Metal Building Systems
Nucor Cold Finish Utah, Brigham City: Cold finished SBQ bar products, cold rolled wire, welded wire mesh
Nucor Steel Utah, Plymouth: Carbon steel angles, channels, flats, reinforcing bars, rounds, squares
Nucor Wire Products Utah, Brigham City: Carbon steel standard mesh, mine mesh, rolled wire
Vulcraft Utah, Brigham City: Carbon steel in joists, joist girders, composite floor joists, special profile steel trusses

Virginia
American Buildings Company Atlantic Region, LaCrosse: Metals Building System

Washington
Harris Steel–Harris Rebar, Auburn: Rebar
Harris Steel–Harris Rebar, Lake Stevens: Rebar
Harris Steel–Harris Rebar, Port of Tacoma: Rebar
Nucor Steel Seattle, Seattle: Carbon steel angles, channels, flats, reinforcing bar, rounds, squares

Wisconsin
Nucor Steel–Ambassador Steel Fabrication, Menomonee: Rebar
Nucor Steel–Ambassador Steel Fabrication, Waukesha: Rebar
Nucor Cold Finish Wisconsin, Oak Creek: Carbon, leaded, alloy cold drawn steel bars

North American Production: 20.0 million tons

David J. Joseph, Co. (a Nucor Subsidiary)
David J. Joseph, Co. is a scrap subsidiary of Nucor Corporation and has numerous locations in the following states: Alabama, Colorado, Florida, Illinois, Indiana, Kansas, Kentucky, Missouri, Nebraska, Nevada, New Mexico, North Carolina, Ohio, Pennsylvania, South Carolina, Texas, Utah
Harris Steel Group (a Nucor Subsidiary)

CANADA

Alberta
- Harris Rebar, Calgary: Rebar
- Fisher & Ludlow, Edmonton: Bar and safety grating, expanded metals products
- Fisher & Ludlow, Wetaskiwin: Bar and safety grating, expanded metals products
- Harris Rebar, Fort Saskatchewan: Rebar
- Harris Rebar, Leduc: Rebar

British Columbia
- Harris Rebar, Abbotsford: Rebar
- Harris Rebar, Kelowna: Rebar
- Harris Rebar, Nanaimo: Rebar
- Fisher & Ludlow, Surrey: Bar and safety grating, expanded metals products
- Harris Rebar, Delta Vancouver: Rebar

New Brunswick
- Harris Rebar, St. John: Rebar

New Foundland
- Harris Rebar, Mount Pearl: Rebar

Nova Scotia
- Harris Rebar, Dartmouth: Rebar

Ontario
- Harris Steel Group, Stoney Creek: Corporate Headquarters
- Harris Rebar, Ontario, Brampton: Rebar
- Fisher & Ludlow, Burlington: Bar and safety grating, expanded metal products
- Harris Rebar, Hamilton: Rebar
- Harris Rebar, London: Rebar
- Harris Rebar, Mississauga: Rebar
- Harris Rebar, Ottawa: Rebar
- Harris Rebar, Sarnia: Rebar
- Harris Rebar, Scarborough: Rebar
- Harris Rebar, Sudbury: Rebar
- Harris Rebar, Thunder Bay: Rebar
- Harris Rebar, Maidstone, Windsor: Rebar
- Harris Rebar, Laurel, Burlington: Cold-finish steel bars, welded wire mesh, cold-drawn wire

Manitoba
- Harris Rebar, Winnipeg: Rebar

Quebec
- Harris Rebar, Longueuil, Montreal: Rebar
- Fisher & Ludlow, Point Aux Trembles: Bar and safety grating, expanded metals products

Saskatchewan
- Harris Rebar, Regina: Rebar
- Harris Rebar, Saskatoon: Rebar

Severstal North America, Inc.

North American Locations

Headquarters: Dearborn, MI

U.S.

Michigan
- Dearborn: Slabs, hot and cold rolled sheet, electrogalvanized sheet, hot-dip galvanized sheet

Mississippi
- Columbus: Hot rolled, cold rolled and galvanize/galvanneal coated products, including high-quality surface steels for exposed automotive applications

North American Production: 5.5 million tons (cast steel production)

SSAB Americas

North American Locations

Headquarters: Lisle, IL

U.S.

Alabama
- Mobile: Plate and coil

Iowa
- Montpelier: Plate, slit coil and coil
MINNESOTA
Roseville: Cut-to length sheet and plate

TEXAS
Houston: Cut-to length sheet and plate
North American Production: 2.5 million tons

TENARIS TAMSA
North American Locations
Headquarters: Mexico City, Mexico

U.S.
Arkansas
Blytheville: Maverick Tube Corporation (welded steel tubes)

California
Bakersfield: Hydril Company (threading facility)

Louisiana
Westwego: Hydril Company (threading facility)

Texas
Conroe: Maverick Tube Corporation (welded steel tubes)
McCarty/Houston: Hydril Company (threading facility)
Downhole Center/Houston: Tenaris Coiled Tubes, LLC (coiled tubes facility)
Subsea Center/Houston: Tenaris Coiled Tubes, LLC (coiled tubes facility)
Houston: Texas Aral (couplings facility)

CANADA
Ontario
Saulte Ste.: Algomatubes Inc. (seamless steel tubes)

Alberta
Calgary: Prudential Steel Ltd. (welded steel tubes)
Nisku: Hydril Canadian Company Ltd (threading facility)

MEXICO
Tenaris Tamsa
Veracruz: Seamless steel tubes, R&D Center, threading facility

Tabasco
Comalcalco: Threading facilities
North American Production: 1.5 million tons

TERNIUM
North American Locations
Headquarters Location: Monterrey, Mexico

MEXICO
Coahuila
Monclova: Galvanized and color coated steel

Nuevo León
Apodaca: Billets, rebars
Ciénega de Flores: Steel buildings
San Nicolás: HRC, CRC, profiles and tubes, panels, galvanized and color coated coils, rollformed

Puebla
Puebla: Rebar, wire rod

U.S.
Louisiana
Shreveport: Galvanized, color coated sheets

Puebla
Puebla: Rebar, wire rod

Product Distribution Centers/Service Centers
Baja California
Tijuana

Chiapas
Túxtlá Gutierrez

Chihuahua
Chihuahua

Distrito Federal
Ciudad de México

Jalisco
Guadalajara

Nuevo León
Apodaca

Puebla
Puebla

Yucatán
Mérida
San Luis Potosí
San Luis Potosí
Sinaloa
Culiacán
Veracruz
Veracruz
Mines
Colima
Peña Colorada (Ternium Share 50%)
Cerro Náhuatl
Piscila/Cayacal (in exploration)
Jalisco
El Encino
Sierra del Alo (exploration process)
Michoacán
Aquila
Colomera (in exploration)
North American Production: 7.5 million tons

THE TIMKEN COMPANY
North American Locations
Headquarters: Canton, OH
U.S.
Arizona
Mesa: Timken Aerospace Aftermarket Solutions (products and services)
California
Los Alamitos: Timken Bearing Inspection Inc. (aerospace)
Connecticut
Manchester: Timken Aerospace Transmissions, LLC (gearboxes and transmissions for military and commercial aircraft)
Manchester: Technology Engineering Center (aerospace)
Georgia
Ball Ground (Canton): Green Ring Plant (small facility)
Illinois
Fulton: Timken Drives
Indiana
South Bend: South Bend Plant (reconditioning and remanufacturing of antifriction roller bearings)
New Hampshire
Keene: Technology center and Timken Super Precision (health and positioning control bearing products)
Lebanon: Timken Aerospace (precision bearings for aerospace)
North Carolina
Columbus (Tyron Peak): Timken STEEL Value added processing
Iron Station (Lincolnton): Bearing Plant (mobile and industrial)
Randleman (Asheboro): Bearing Plant (industrial and aerospace)
Rutherfordton (Shiloh): Bearing Plant (aerospace)
Ohio
Bucyrus: Bearing Plant (mobile and industrial)
Canton: Harrison STEEL (Alloy steel bars)
Canton: Faircrest STEEL (Alloy steel bars, billets)
Canton: Gambrinus Roller Plant (Rollers for roller bearings)
Canton: Gambrinus STEEL (Seamless tubing)
(note: Timken does not produce sheet metal)
Canton: Sales and administrative offices, Timken Bearings & Power Transmission and STEEL
Eaton (St. Clair): STEEL (Specialty steel components for vehicles)
New Philadelphia: Bearing Plant (precision aerospace and industrial)
Niles: Industrial Services Plant (life-extending surface technologies)
North Canton: Technology Engineering Center (global engineering headquarters)
Pennsylvania
King of Prussia: Timken Gears & Services, Inc.
South Carolina
Duncan: Distribution Center
Gaffney: Bearing Plant (mobile and aerospace)
Honea Path: Bearing Plant (mobile)
Union (Tyger River): Bearing Plant (Ultra-large-bore tapered roller bearings for wind turbines and large machinery)
Union (Tyger River): Industrial Service Center
Tennessee
Mascot (Knoxville): Sales office and Rail Bearing Services Facility
Pulaski: Bearing Plant (industrial bearings, housed units and components)

Texas
Houston: Timken Boring Specialties, LLC (STEEL) Value added processes

Virginia
Altavista: Bearing plant

Washington
Ferndale: Bearing plant

North American Production: 1.2 million tons

THYSSENKRUPP STEEL USA, LLC

North American Locations
Headquarters: Calvert, AL

U.S.
Alabama
Calvert
Products: Hot rolled, Cold rolled, pickle and oiled, galvanized, galvannealed, aluminized and galvalume

Michigan
Detroit: Automotive Sales office

North American Production: 2.5 million tons (estimated for 2012), 4.5 million steady state full production (2013).

UNITED STATES STEEL CORPORATION

North American Locations
Headquarters: Pittsburgh, PA

U.S.
Alabama
Fairfield: Slabs, rounds, sheets, seamless tubular mill

Arkansas
Pine Bluff: Tubular couplings

California
Pittsburg: JV USS-POSCO Industries (sheets and tin mill) and JV United Spiral Pipe, LLC (spiral welded tubular)

Illinois
Granite City: Sheets, slab and coke

Indiana
East Chicago: Tin mill
Gary: Slabs, tin mill, sheets, strip mill plate, coke
Portage: Sheets and tin mill

Michigan
Canton: JV Worthington Specialty Processing (steel processing)
Dearborn: JV Double Eagle Steel Coating Company (Galvanized sheets)
Ecorse and River Rouge: slabs and sheets
Ishpeming: Tilden Mining Company (iron ore pellets)
Jackson: JV Double G Coatings Company, L.P. (Galvanized and GALVALUME® sheets)
Taylor: JV Worthington Specialty Processing (steel processing)

Minnesota Mining Operations
Hibbing: Hibbing Taconite Company (iron ore pellets)
Keewatin: Keetac Iron Ore Operations (iron ore pellets)
Mt. Iron: Minnitsac Iron Ore Operations (iron ore pellets)

Mississippi
Jackson: JV Double G Coatings Company, L.P. (Galvanized and GALVALUME® sheets)

Ohio
Leipsic: JV PRO-TEC Coating Company (Galvanized sheets)
Lorain: Seamless tubular
Pennsylvania
Braddock: Slabs
Fairless Hills: Galvanized Sheets
Clairton: Coke
McKeesport: Welded tubular
West Mifflin: Sheets
Munhall: Research and Technology Center

Texas
Belville: Welded tubular
Hughes Springs: Tubular couplings
Houston: Tubular couplings, processing, threading, inspection and storage service, research and development center
Lone Star: Welded tubular

CANADA
Alberta
Calgary: U.S. Steel Tubular Products Canada Sales Office

Ontario
Beamsville: JV Chrome Deposit Corporation: Processing, administrative)
Hamilton: JV Baycoat (Finishing)
Hamilton: Hamilton Works: (Steelmaking, finishing, coke production)
Nanticoke: Lake Erie Works (Steelmaking, finishing, coke production)
Stoney Creek: JV D.C. Chrome Limited (Processing and joint venture)

MEXICO
Coahuila
Ramos Arizpe: JV Acero Prime (Processing, warehousing)

Sam Luis Potosi
San Luis Potosi: JV Acero Prime (Processing, warehousing)

North American Production: 24.3 million tons

USS-POSCO INDUSTRIES

North American Locations
Headquarters: Pittsburg, CA

California
Pittsburg: Sheet products and tin mill

North American Production: 1 million tons
Associate Members

Accenture
ADS Logistics Co LLC
Aether DBS
AKJ Industries, Inc.
Albemarle Environmental Division
Algom Central Corporation
Almatis, Inc.
Alphabet Energy
Alpha Natural Resources
American Steamship Company
ASKO, Inc.
ATSI, Inc.
Avalotis Corporation
Babst, Calland, Clements & Zomnir, P.C.
Bahc
Bailey PVS Oxides
Baosteel America Inc.
Barnes & Thornburg
BASF Corporation
Beemsterboer Slag Corporation
Berkeley Research Group, LLC
Berry Metal Company
Bricmont, Inc.
Carmuse Lime and Stone
Castrip, LLC
Castrol Industrial North America Inc.
Cattron Group International
ChemTreat, Inc.
Chrome Deposit Corporation
Consolidated Terminals and Logistics Co.
Core Furnace Systems Corporation
CSX Transportation
Danieli Corporation
David J. Joseph Company
Deublin Company
Drives LLC
Eckert Seamans Cherin & Mellott
Edw. C. Levy Company
Eramet North America, Inc.
Feralloy Corporation
First River
Fritz Enterprises, Inc.
GrafTech International Ltd.
Hatch
Heffernan International
Heraeus Electro-Nite Company, LLC
Heritage Environmental
Hilti, Inc.
HYDAC International
Hydrochem Industrial Services, Inc.
IAT International, Inc.
Independent Equipment Company
INTEG Process Group, Inc.
INTL FC Stone
Itipack Systems Inc.
ITW Buildex
JMC Steel Group
K & L Gates LLP
Kelley Drye & Warren LLP
Kenilworth Steel Company
Kvaerner NAC
Lapham-Hickey Steel Corporation
Lhoist North America
Longbow Research
M.K. Technologies Inc.
Magneco/Metrel, Inc.
Magnesita Refractories Company
Magotteaux, Inc.
Metal Strategies, Inc.
Nalco Company
National Material, L.P.
New Millenium Building Systems
Nippon Steel USA, Inc.
Norfolk Southern Corporation
North American Refractories Company
Northrop Grumman Corporation
ODERCO Inc.
O’Neal Steel, Inc.
Oracle
Otto Wolf U.S. Sales Corp.
P.I. & I. Motor Express
Pacesetter Steel Service, Inc.
Pepper Hamilton LLP
PGT Trucking, Inc.
PLS Logistics Services
POSCO America Corp.
Praxair, Inc.
PricewaterhouseCoopers LLP
Primary Energy Recycling Corporation
Process Metrix LLC
PSC Metals, Inc.
Reference Metals Company
River Hill Coal Company
Robindale Energy & Associated Companies
Schneider Electric
Sector3 Appraisals, Inc.
SES, LLC
SGL Carbon Corporation, LLC
Showa Denko Carbon, Inc.
Siemens Industry Inc.
Silgan Containers Corporation
SMS Mill Services, LLC
SMS Siemag LLC
Squire, Sanders & Dempsey LLP
Steel Technologies
Steelfast Framing Systems, Inc.
Steelscape, Inc.
SunCoke Energy Company
Telling Industries
Tenova Goodfellow Inc
The David J. Joseph Company
The Interlake Steamship Company
The Lincoln Electric Company
The Shaw Group Inc.
TMEIC–GE
Tube City IMS, LLC
U.S. Geological Survey
Uhde Corporation of America
Unconventional Solutions, Inc.
Veolia Water North America
Vesuvius USA Corp.
Woodings Industrial corporation
Xcoal Energy & Resources
Xtek, Inc.
2012 Board of Directors

Joseph A. Carrabba
Chairman, President, and
Chief Executive Officer
Cliffs Natural Resources, Inc.

William Chisholm
Chief Executive Officer
ArcelorMittal Mexico

Daniel R. DiMicco
Chairman and
Chief Executive Officer
Nucor Corporation

Christian Dohr
President and Chief Executive Officer
ThyssenKrupp Steel USA

Miguel Elizondo
Sales and Marketing Director
Altos Hornos de Mexico, S.A.

Ivan Flores
President
Compania Siderurgica Huachipato, S.A.

Thomas J. Gibson
President and Chief Executive Officer
American Iron and Steel Institute

Raul Gutierrez
Director General
DEACERO, SA de CV

Steve Harker
President
Kvaerner North American Construction

Gene Iannazzo
Chief Commercial Officer
Harsco Metals & Minerals

Guilherme Johannpeter
President and Chief Executive Officer
Gerdau Long Steel North America

Sergei A. Kuznetsov
President and Chief Executive Officer
Severstal North America, Inc.

Bruce Liimatainen
Chairman and Chief Executive Officer
A. Finkl & Sons Co.

Giorgio Piliu
President
Heico 2004 Member Inc.

Michael T. Rehwinkel
Chief Executive Officer
Evraz Inc. NA

Michael Rippey
President and Chief Executive Officer
ArcelorMittal USA

David Ruud
President
DTE Energy Services

Hans J. Sack
President and Chief Executive Officer
Berg Steel Pipe Corporation

Regulo Salinas
Vice President
Ternium Mexico

Juergen G. Schachler
President and Chief Executive Officer
ArcelorMittal Dofasco

Chuck Schmitt
President
SSAB Americas

Robert R. Smith
President
USS-POSCO Industries

John P. Surma
Chairman and Chief Executive Officer
United States Steel Corporation

Ward J. Timken, Jr.
Chairman
The Timken Company

Guilermo F. Vogel
Vice Chairman of the Board
TenarisTamsa

James L. Wainscott
Chairman, President and
Chief Executive Officer
AK Steel Corporation

Vicente B. Wright
President and Chief Executive Officer
California Steel Industries, Inc.